
ESS용

리튬이온배터리 사용자 매뉴얼

리튬이온 배터리 사용자 매뉴얼

(Model: RK36150 / RK28150 / RK37100 / RK3650 / RK2950)

#80-28, Techno 2-ro, Yuseong-gu, Daejeon

South korea 61008

Tel: +82-42-635-5684 Fax: +82-42-635-5683

Home page : www.koreapowercell.co.kr

- ◆ 이 제품과 사용자 매뉴얼은 ㈜한국파워셀의 소유권 정보를 포함합니다.
 - 이 정보는 여기에서 설명하는 장비를 작동하고 유지하는 당사자의 사용과 정보를 위해서만 사용하는데 목적을 둡니다.

(취한국파워셀의 명시적인 서면 승인 없이 이러한 재산상의 정보를 사용, 복사, 복제, 번역하거나 다른 목적을 위해 다른 사람/기업에게 공개하는 것을 금합니다.

- ◆ 제품 성능의 지속적인 향상은 ㈜한국파워셀의 정책이므로 모든 사양과 표시를 통지 없이 변경할 수 있습니다.
- ◆ 안전을 위한 주의사항은 사용자의 안전을 지키고 재산상의 손해 등을 막기 위한 내용입니다. 반드시 읽고 올바르게 사용하세요.
- ◆ 사용자 매뉴얼은 찾기 쉬운 곳에 보관해 주세요.

Revision History

Data	Revision	Writer	Contents
2021-11-15	1.0	Kim Sung Min	최초 제정
-			

목차

1. 설명서 안내	
1.1 설명서 안내	· 1
1.2 보증 불가항목	
1.3 사용 기호	
1.4 ESS 구성 및 활용 ······	· 2
2. 안전지침	. 3
2.1 주의사항	. 3
2.2 경고	· 4
3. 설치	· 5
3.1 설치 공구	٠?
3.2 제품	٠?
3.3 제품 명칭	٠6
3.3.1 배터리 Rack ······	٠6
3.3.2 배터리 Module ······	. 8
3.3.3 BPU	10
3.3.4 Accessory	11
3.4 설치 전 제품점검	13
3.4.1 모듈 전압 측정	13
3.4.2 절연저항 측정	13
3.4.3 환경 점검	14
3.5 설치 절차	14
3.5.1 Rack 설치 및 고정 ·····	14
3.5.2 접지 단자 고정	15
3.5.3 제품 장착 및 고정	15
3.5.4 통신케이블 연결	17
3.5.5 제품 결선	
3.5.6 제어 전원연결	21
3.5.7 설치 완료	22
4. 외부 장비 통신, DC FAN ···································	24
4.1 외부 장비 통신	24
4.1.1 통신 사양	
4.1.2 통신연결	24
4.2 DC FAN(Optional)	25
4.2.1 DC Fan 장착 ······	25
4.2.2 DC Fan 사양	25
4.2.3 DC Fan 회로 구성과 제어	26

5. 제품 사양	27
5.1 시스템 구성	27
5.2 모듈 사양	····· 28
5.2.1 사양	28
5.2.2 Slave BMS 기능	28
5.2.3 모듈 외형도	29
5.2.4 Block Diagram ·····	····· 29
5.3 Rack 사양 ·····	30
5.3.1 사양	
5.3.2 보호 기능 용어 정리	31
5.3.3 Rack 외형도 ······	
5.3.4 Block Diagram	
5.4 BPU 사양 ·····	
5.4.1 사양	
5.4.2 BPU 외형도 ·····	
5.4.3 BPU 각 부 명칭 및 기능	
6. 기동 및 절차	35
6.1 기동 절차	
6.2 정지 절차	
7. 모듈 온도 센서	38
7.1 일반사항	
7.2 사양	
8. BMS 보호 설정값 ······	39
9. 충전 및 방전 제어 알고리즘 (CC CV Cut-off)	····· 40
9.1 표준 충전 알고리즘	····· 40
9.2 표준 방전 알고리즘	····· 41
9.3 적용	····· 41
10. 고장 복구	42
10.1 과충전, 과방전 보호	····· 42
10.2 고온, 저온 보호	····· 42
10.3 통신에러	····· 42
10.4 그 외	····· 42
11. 관리	
11.1 제품 청소 ······· 11.2 점검 항목 ······	

표 목차

Table 1. Rack 구성 및 사양	6
Table 2. 배터리 Module 구성 및 사양 ·······	8
Table 3. BPU 구성 및 사양 ······	·· 10
Table 4. 시스템 구성 ······	·· 27
Table 5. 모듈 사양 ·····	·· 28
Table 6. Rack 사양 ·····	30
Table 7. BPU 사양	33
Table 6. 상태표시 LED	34
Table 7. BMS 보호 설정값	39
그림 목 차	
그 · · Figure 1. ESS 구성 ··································	2
Figure. 2 배터리 Rack 명칭	
Figure 3. 모듈 명칭	
Figure 4. 모듈 라벨	
rigure 5. 라벨 기호 ···································	
rigure 6. BPU 명칭	
rigure 7. 통신케이블 1 ···································	
Figure 8. 통신케이블 2 ···································	
rigure 9. 커넥터 케이블 ···································	
rigure 10. 배터리 (+)케이블 ····································	
Figure 11. 배터리 (-)케이블 ····································	
Figure 12. 고정 볼트 ···································	
rigure 13. 모듈 볼트 ···································	
- Grand	
· · · · · · · · · · · · · · · ·	
Figure 17. Rack 고정	·· 14
- Figure 18. 접지 단자 Rack 고정 ···································	
- Figure 19. 제품 장착 및 고정 ··································	
Figure 20. 제품고정 Hole	·· 17
Figure 21. 통신케이블 1, 2 연결 방법	
Figure 22. 모듈 간 직렬연결	
Figure 23. Rack 직렬연결	
Figure 24. 배터리 (+)케이블, 배터리 (-)케이블 연결 ······	
- Figure 25. PCS(+), PCS(-) 케이블 연결 ···································	
Figure 26 RMS 제어 저워 다자 여격	

리튬이온 배터리 사용자 매뉴얼

Figure 27.	설치 완료	23
	배터리 시스템 외부 장비 통신연결	
Figure 29.	DC FAN 장착 ·····	25
Figure 30.	DC FAN 도면 ·····	25
Figure 31.	DC FAN 회로 구성방법	26
Figure 32.	모듈 외형	29
Figure 33.	모듈 Block Diagram ·····	29
Figure 34.	Rack 외형 ·····	31
Figure 35.	Rack Block Diagram	32
	BPU 외형 ·····	
Figure 37.	BPU 전면부 ·····	34
Figure 38.	배터리 시스템 정상 LED	36
Figure 39.	배터리 시스템 경고 LED	36
	배터리 시스템 고장 LED	
	표준 충전 알고리즘	
Figure 42.	표준 방전 알고리즘	46

1. 설명서 안내

1.1 설명서 안내

- 본 매뉴얼은 ㈜한국파워셀 배터리 시스템 설치 절차에 대해 작성한 것입니다.
- 본 매뉴얼은 Battery Rack, Module, BPU의 설치를 위해 ㈜한국파워셀의 요구 사항과 권장 사항을 제공합니다.
- 제품은 승인된 엔지니어(설치 교육 이수자)만 설치 가능하며 설명서의 주의사항, 설치 절차에 따르지 않아 제품이 손상되었을 경우 보증 수리가 불가합니다.
- 본 매뉴얼은 ESS용 리튬이온 배터리의 설치 매뉴얼 입니다. 시스템을 설치하고 작동하기 전 사용설명서를 숙지합니다.

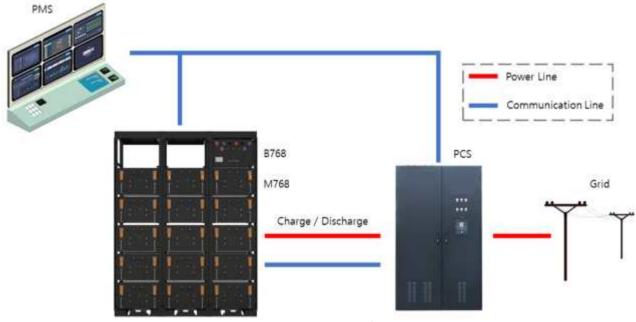
1.2 보증 불가 항목

- 아래 항목의 사유로 제품에 결함이 발생했을 시, 당사의 책임이 아니며 제품의 보증과 손해배상 책임에서 제외됩니다.
 - 적절치 못한 운송 및 보관 중에 대한 손상
 - 적절치 못한 설치
 - 적절치 못한 보관 및 제품의 운영 환경
 - 적절치 못한 공조 장치
 - 안전 지시사항, 배터리 사양, 매뉴얼 미준수
 - 허가받지 않은 기술자에 의한 제품 설치, 분해, 수리, 또는 변경
 - 불가항력의 자연재해

1.3 사용 기호

주의

- 제품 손상이나 부상이 발생할 수 있는 상황을 나타냅니다.
- 적절한 예방조치를 하지 않는 경우 경미한 부상 및 제품 손상이 발생할 수 있습니다.



경고

- 잠재적으로 위험한 상황을 나타냅니다.
- 적절한 예방조치를 취하지 않는 경우 중상이 발생할 수 있습니다.

1.4 ESS 구성 및 활용

<Figure 1. ESS 구성>

- ESS 구성은 배터리 시스템, PCS, EMS or PMS로 구성됩니다.
- 배터리 시스템은 배터리, 배터리를 관리하고 배터리 정보를 제공해주는 BMS로 구성됩니다.
- BMS: Battery Management System
- PCS : Power Conditioning System
- EMS: Energy Management System
- PMS: Power Management System
- ESS는 목적에 따라 다양하게 사용됩니다.
 - 신재생 에너지 태양광 연계 ESS
 - 신재생 에너지 풍력 연계 ESS
 - 수요 조절용 연계 ESS
 - EV 충전소 연계 ESS

2. 아저지침

2.1 주의사항

주의

- 배터리 설치 시 근처에 인화 물질을 두지 마시고, 항상 소화기를 구비 하십시오.
- 배터리 모듈이나 Rack 위에 물건을 쌓지 마십시오.
- 침수의 우려가 있는 곳에 설치하지 마십시오.
- 제품이 설치되는 장소는 기울어짐이 없고 수평이 맞아야 합니다.
- 제품의 설치장소는 중량과 진동을 충분히 견딜 수 있어야 합니다.
- 배터리 운영 및 보관의 온도 범위는 25°C±5°C입니다.
- 배터리 운영 및 보관의 습도 범위는 40~80%입니다.
- 배터리실 온도 환경을 맞춰 주시고 이외의 온도 범위에서는 제품의 성능이나 수명이 저하 됩니다.
- 배터리실 습도 관리가 되지 않으면 배터리 고장 및 화재의 원인이 됩니다.
- 외기 40℃ 이상, 습도 80% 이상일 경우 배터리 설치작업을 할 수 없습니다.
- 냉난방 및 히터, 소화기 동작이 가능한 상태에서 배터리 반입 및 설치 가능합니다.
- 손상되거나 마모된 전기 케이블 및 커넥터를 사용하지 않습니다.
- 감전 가능성을 방지하기 위해 접지선을 연결해야 합니다.
- 이 장치의 설치는 ESS를 설치할 수 있는 자격을 갖춘 전기 기술자 또는 기술자에 의해서만 설치되어야 합니다.
- 배터리는 감전 및 높은 단락 전류와 같은 위험이 있습니다. 배터리 작업 시 다음 사항을 준수해야 합니다.
 - 시계, 반지와 같은 금속 물질을 제거합니다.
 - 의도하지 않은 단락을 방지하기 위해 절연된 도구를 사용합니다.
 - 적절한 방법으로 배터리를 이동하고 적절한 모든 안전복과 안전장비를 착용해야 합니다.
 - 공구 또는 금속 부품을 배터리 위에 올려놓지 않습니다.

2.2 경고

경고

- Module 또는 배터리 BPU의 양극 단자와 음극 단자를 절대로 단락시키지 마십시오.
- 배터리 모듈의 임의적인 조작을 금지합니다. (단락, 수정, 분해, 조립 등)
- 배터리를 던지거나 충격을 주지 마십시오.
- 매뉴얼 이외의 배터리 배선을 금지합니다.
- 잘못된 배선은 모듈의 손상이나 폭발 등의 위험한 사고를 초래하며 화재로 이어질 수 있습니다.
- 배터리 모듈의 금속 단자(출력 터미널)를 만지지 않도록 합니다.
- 배터리 출력 단자에 금속 물건을 접촉하지 마십시오.
- 낙하된 제품을 설치하거나 사용하지 않습니다.
- 높은 전압으로 인해 감전이나 심각한 화상을 입을 가능성이 있습니다.
- 제품은 적절한 예방조치를 하지 않거나 완전히 이해하지 못한 경우 화재, 고전압 또는 폭발에 의한 사망이나 심각한 부상과 같은 잠재적인 위험이 있습니다.
- 전기 설비는 지역 및 국가 전기안전표준에 따라 설치 및 운영해야 합니다.
- 배터리 시스템 등 고전압/고전류 시스템에서 작업할 때는 절연 장갑과 보호복을 착용하십시오.
- 감전의 위험이 있으니 덮개(Case)를 제거하지 마세요. 내부에는 사용자가 수리할 수 있는 부품이 없습니다. 자격을 갖춘 공인된 기술자에게 문의해야 합니다.

3. 설치

3.1 설치 공구

주의

배터리 설치 시 사용하는 공구는 모두 절연되어 있거나 금속 부분의 노출이 없어야합니다.

만약 금속 부분이 노출되어 있다면 최소 손잡이 부분은 절연처리 되어 있어야 합니다.

1) 전동 드라이버

- 제품의 외함 고정이나 Busbar 및 케이블을 체결할 때 사용합니다.
- 임팩 드라이버의 사용을 금지합니다.
- 임팩 드라이버 사용 시 볼트와 너트가 파손될 수 있습니다.

2) 토크 렌치

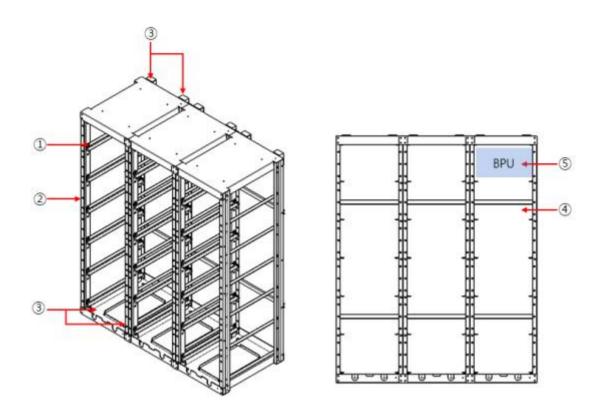
- Busbar 및 케이블 체결 후 조임을 위해 사용됩니다.
- 모듈 볼트(M4) 적정 토크: 14 kgf·cm(1.4 N·m)
- 렉 프레임 연결 볼트 (M6, M8) 적정 토크 : 50~60 kgf·cm(M6), 110~120 kgf·cm(M8)
- 렉 고정 볼트 (M12~16) 적정 토크 : 400~900 kgf·cm

3) 디지털 멀티 테스터 및 절연시험기

- 제품 전압 측정 및 절연 체크 시에 사용합니다.
- DC 1000V급 이상 사용합니다.

3.3 제품 명칭

3.3.1 배터리 Rack


- 제품을 장착하고 고정하는 Frame과 배터리 모듈, BPU로 구성됩니다.
- Rack 하부 고정 홀에 볼트, 너트를 사용하여 Rack을 고정합니다.
- Rack 1개당 모듈 및 BPU 구성은 모델별로 차이가 있으며 세부 내용은 Table 6.을 참조하세요.

모델	RK3	RK28150	
외관			
시스템 구성	M768 15S + B768	M768 17S + B768	M768 15S + B768
Nominal Voltage [V]	768	768	
Energy [kWh]	115.2	115.2	
Capacity [Ah]	150	150	
Size (WxDxH) [mm]	1392 x 692.2 x 1,710	928 x 692.2 x 2,238	
Weight [kg]	About 1,255	About 1,404	About 1,225

모델	RK37100	RK3650	RK2950
외관			
시스템 구성	M384 19S + B384	M256 17S + U256	M256 17S + U256
Nominal Voltage [V]	729.6	870.4	870.4
Energy [kWh]	72.9	43.5	43.5
Capacity [Ah]	100	50	50
Size (WxDxH) [mm]	891 x 767 x 1,764	1,248 x 692 x 1,360	832 x 692 x 1909
Weight [kg]	About 1,025	About 755	About 735

< Table 1. Rack 구성 및 사양 >

<Figure. 2 배터리 Rack 명칭>

- ① 제품 받침 브라켓
- ② Cage nuts (클립 타입-제품고정용)
- ③ Rack 고정
- ④ Module 설치 위치
- ⑤ BPU 설치 위치

3.3.2 배터리 Module

■ 리튬이온 셀과 모듈 BMS로 구성된 배터리 모듈입니다.

모델	M768	M384	M256
외관		-	
시스템 구성	150Ah cell 16S	100Ah cell 12S	50Ah cell 16S
Nominal Voltage [V]	51.2	38.4	51.2
Energy [kWh]	7.68	3.84	2.56
Capacity [Ah]	150	100	50
Dim. (WxDxH) [mm]	570 x 450 x 242	645 x 283 x 212	523 x 402 x 167
Weight [kg]	About 72	About 45	About 35

< Table 2. 배터리 Module 구성 및 사양 >

<Figure 3. 모듈 명칭>

- ① 모듈~모듈, 모듈~BPU 통신 포트
- ② BMS Cover
- ③ USB 커넥터
- 4 LED
- ⑤ + : 양극 단자, : 양극 단자
- ⑥ 모듈 고정 Hole
- ⑦ 모듈 손잡이

■ Module 라벨

<Figure 4. 모듈 라벨>

■ 라벨 기호

고압전기 주의

습기 주의

화기 작업 주의

중량물 취급 주의

과방전 주의

전용 충전기 사용

가스 발생 주의

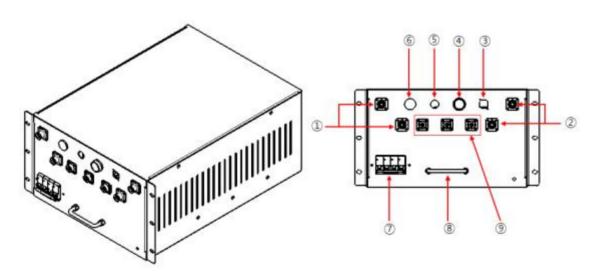
임의조작금지

장기미사용 주의

주행 전 확인

혼용 및 단락 금지

<Figure 5. 라벨 기호>


3.3.3 BPU

■ Rack 단위 배터리 관리 장치로서 내부에 BPU 회로와 배터리 보호장치를 내장하고 있습니다.

■ 배터리 Rack 상부에 설치됩니다.

모델	B768	B384	U768	U256
외관				
Dim. (WxDxH) [mm]	565 x 450 x 240	620 x 283 x 212	581 x 450 x 240	581 x 402 x 240
Weight [kg]	About 25	About 20	About 30	About 30

< Table 3. BPU 구성 및 사양 >

<Figure 6. BPU 명칭>

① 메인+ 단자대: 모듈 양극단자 연결, PCS 양극단자 연결

② 메인- 단자대 : 모듈 음극단자 연결, PCS 음극단자 연결

③ RJ45 커넥터

④ 전원 스위치

⑤ 상태표시 LED

⑥ USB 커넥터

⑦ 회로 차단기

Handle

⑨ 통신 커넥터 : CAN / 24V 전원 입력 / Wake Up

3.3.4 Accessory

1) 통신케이블 1

- 모듈과 BPU 통신 연결 시 사용됩니다.
- BPU에서 모듈 전원을 공급하는데 사용됩니다.
- 수량 : 1EA

<Figure 7. 통신케이블 1>

2) 통신케이블 2

- 모듈과 모듈 통신 연결 시 사용됩니다.
- 수량 : 14EA

<Figure 8. 통신케이블 2>

3) 커넥터 케이블

- 모듈 간 직렬 연결 시 사용됩니다.
- 수량 : 14EA

<Figure 9. 커넥터 케이블>

4) 배터리 + 케이블

- 모듈 직렬 연결 최종(+) 단자에서 BPU(+) 단자로 연결됩니다.
- 수량 : 1EA

<Figure 10. 배터리 (+)케이블>

5) 배터리 - 케이블

- 모듈 직렬 연결 최종(-) 단자에서 BPU(-) 단자로 연결됩니다.
- 수량 : 1EA

<Figure 11. 배터리 (-)케이블>

6) 제품 고정 볼트

- Rack에 제품을 고정시에 사용합니다.
- 볼트 : M6_십자 육각 샘스 볼트

<Figure 12. 고정 볼트>

7) 모듈 볼트

- 모듈에 부품 고정 시에 사용합니다.
- 볼트 : M4 십자 접시머리볼트

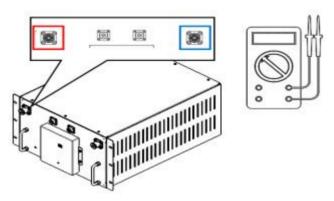
<Figure 13. 모듈 볼트>

8) USB 커넥터

- 배터리 모니터링 및 BMS 펌웨어 업데이트 시 사용합니다.
- 규격: USB Type B Connector

<Figure 14. USB 커넥터>

3.4 설치 전 제품점검


3.4.1 모듈 전압 측정

■ 전압 계측기로 모듈의 양극 단자(+)와 음극 단자(-) 간의 전압을 측정합니다.

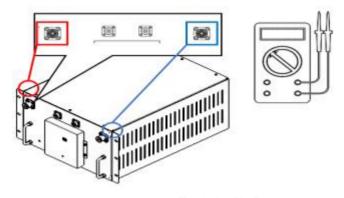
■ 모듈 출하 전압: 49.6~52.8V (M768, M256) / 37.2~39.6V (M384)

■ 정상 판정 기준 : 출하전압 이내, 모듈 간 전압 편차 MinMax 0.02V 이내

■ 계측 포인트 : 양극 단자, 음극 단자

<Figure 15. 모듈 전압 측정>

3.4.2 절연저항 측정


주의

전압 계측과 동일한 방법으로 양극에 측정하지 않습니다..

■ 절연 계측기로 모듈 양극 단자(+) 또는 음극 단자(-)와 모듈 CASE의 도전체 부분을 측정합니다.

■ 정상판정 기준 : 500V 인가 / 10MΩ 이상

■ 계측 포인트: 양극 단자 - 모듈 Case, 음극 단자 - 모듈 Case

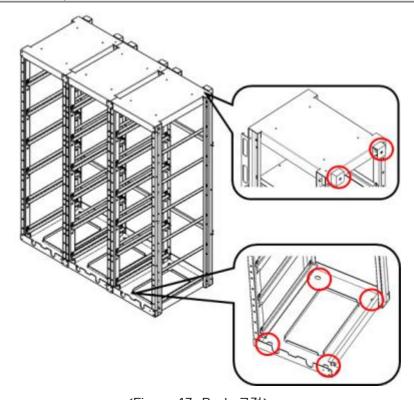
<Figure 16. 모듈 절연저항 측정>

3.4.3 환경 점검

주의

부적합한 환경에서의 제품 설치는 제품 고장 또는 오작동이 일어날 수 있습니다.

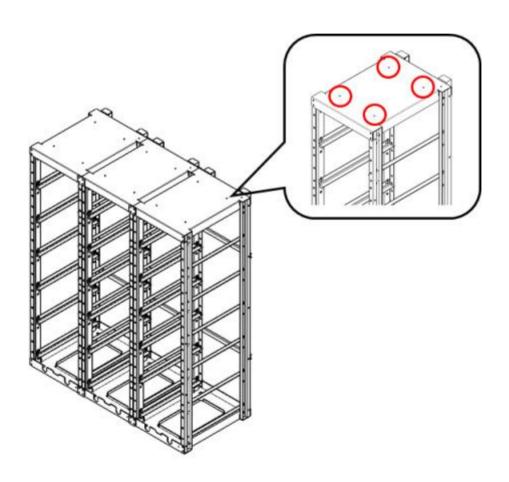
- 배터리실 내부에 습기 여부를 확인합니다. 만약 습기가 있다면 배터리실 온도 및 습도를 점검합니다.
- 주위 환경을 점검합니다. 분진 여부와 날씨를 확인합니다.
- 설치한 Rack의 볼트 체결 부분, 하부 고정상태 등을 점검합니다.
- 제품 수량 및 제품 외관 상태를 확인합니다.
- 제품에 찌그러짐 현상이 있거나 그을린 자국이 있다면 설치를 중지하시고 당사와 협의하십시오.
- 안전 장비 및 안전 복장을 착용합니다. (절연 장갑, 소화기 구비, 안전화, 안전모)
- 배터리 보관 시 환경관리 기준에 맞추어 보관하여야 합니다. (온도: 25°C±5°C, 습도: 40~80%)


3.5 설치 절차

3.5.1 Rack 설치 및 고정

주의

제품이 설치되는 장소는 기울어짐이 없고 수평이 맞아야 합니다. 제품의 설치장소는 중량과 진동을 충분히 견딜 수 있어야 합니다.

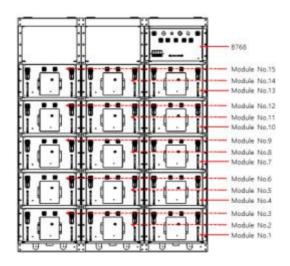

<Figure 17. Rack 고정>

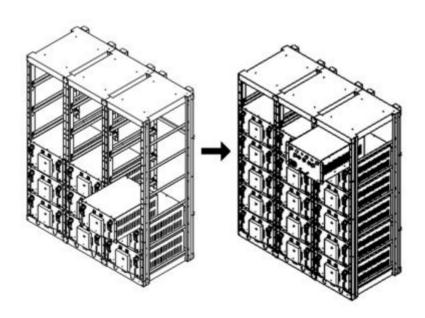
- 공사도면을 참조하여 배터리 Rack을 열반합니다.
- Rack 하부 및 후면 고정 Hole을 이용하여 볼트, 너트를 사용하여 Rack을 고정합니다.
- Rack 고정에는 M12~M16 볼트와 너트를 사용합니다.
- Rack 고정 볼트 및 너트는 별도로 제공하지 않습니다.

3.5.2 접지 단자 고정

■ Rack 상부 접지 단자 고정 부위에 제공된 접지 단자를 고정 후 연결합니다.

<Figure 18. 접지 단자 Rack 고정>

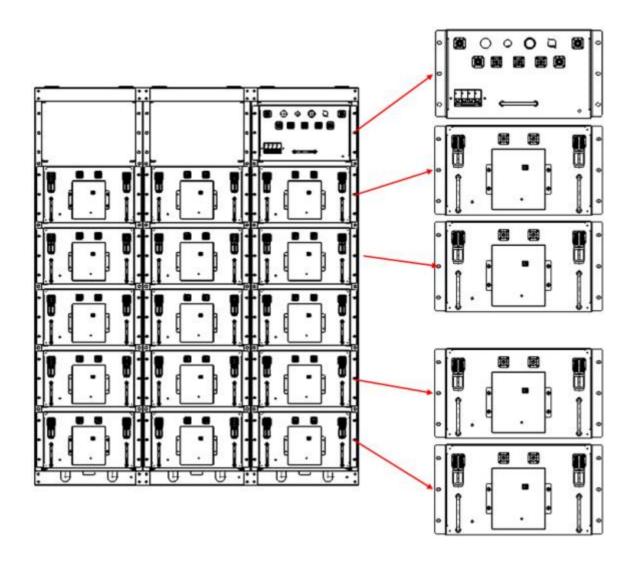

3.5.3 제품 장착 및 고정



주의

모듈 장착은 안전을 고려하여 최소 3명~4명의 인원이 필요합니다. 모듈을 떨어트렸을 경우 해당 모듈은 설치하지 마시고 본사와 상의하십시오. 모듈을 뒤집어서 장착하지 않습니다.

- 설치 제품 : Module (모듈 구성은 Rack 사양에 따라 상이), BPU 1EA
- 제품 장착 전 Rack 사양 목록의 수량 확인하여 예시로 제시된 제품 장착 및 고정 그림처럼 장착합니다.
- 제품은 아래에서부터 Rack 후면 방향으로 밀어서 장착합니다.
- 제품 장착 후 제공된 고정 볼트를 이용하여 고정합니다.



<Figure 19. 제품 장착 및 고정>

- 볼트 고정 시 제공된 M6-십자육각샘스 볼트를 사용합니다.
- 볼트를 사선으로 고정하지 않습니다.

<Figure 20. 제품고정 Hole>

3.5.4 통신케이블 연결

주의

제시된 그림과 같이 연결하며 다른 커넥터에 연결하지 않습니다. 임의로 커넥터를 바꾸어 연결하는 경우 제품이 고장 날 수 있습니다. 제공된 커넥터 및 플러그만 사용합니다.

임의로 제작하여 사용하는 경우 제품이 정상적으로 동작하지 않을 수 있습니다. 모듈 Firmware Update 포트에 연결하지 않습니다.

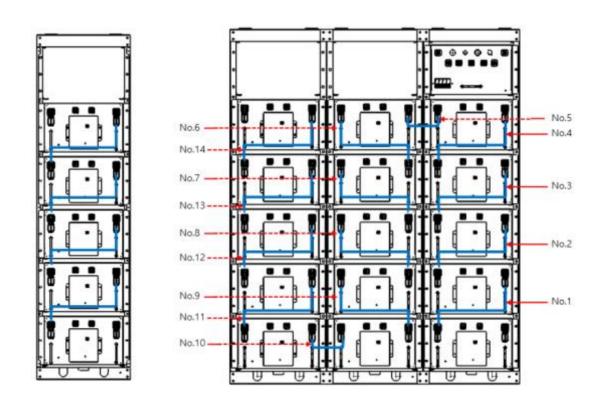
1) 통신케이블 1

- 모듈 가이드 캡을 열고 제공된 통신케이블을 이용하여 모듈과 BPU간 통신케이블을 연결합니다.
- 첫 번째 모듈은 BPU의 LP-16-C08SX-02-401 커넥터에 연결됩니다.
- 아래 그림과 일치하게 연결하며 다른 통신 포트에 연결하지 않습니다.

2) 통신케이블 2

• 제공된 통신케이블 2를 사용하여 모듈 간 통신선을 연결합니다.

<Figure 21. 통신케이블 1, 2 연결 방법>

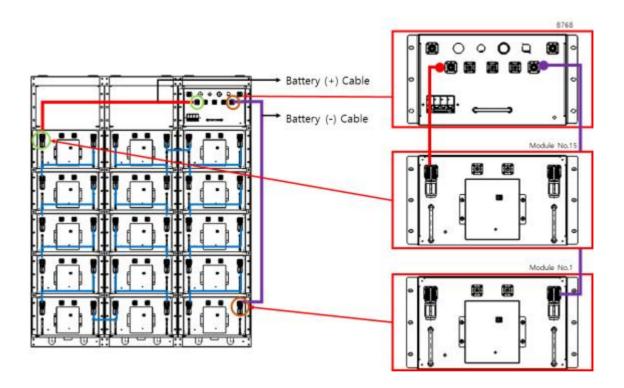

3.5.5 제품 결선

결선은 필히 2인 이상 작업합니다. (1명 Cable 체결자, 1명 체결 보조자)
작업자는 Busbar 또는 케이블 결선 작업 전 절연 장갑을 착용하여야 합니다.
결선에 사용되는 공구들은 절연 처리된 공구를 사용합니다.
결선은 설치 매뉴얼에 제시된 절차대로 작업을 진행합니다.
제품 결선 시 외부단락에 주의합니다.
작업 부주의로 인하여 화재가 발생할 수 있습니다.

1) 모듈 직렬 연결

- 모듈은 전체 직렬연결로 Cable을 이용하여 모듈 간 직렬 연결을 합니다.
- 그림을 참조하여 Rack 상단에서부터 차례로 직렬 연결을 합니다.
- Cable 고정은 제공된 커넥터를 사용합니다.
- 직렬 연결 그림은 다음과 같습니다. (소켓과 플러그 키 방향 확인 필수!)

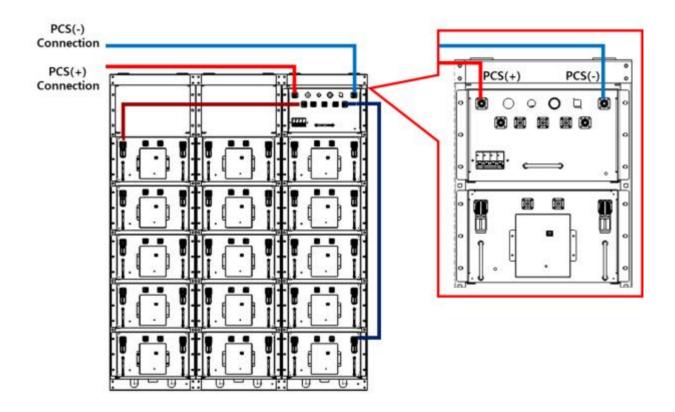
<Figure 22. 모듈 직렬 연결>


<Figure 23. Rack 직렬 연결>

2) 배터리 케이블 연결

■ Module ~ BPU 연결

- Battery(-) Cable을 BPU(-) 단자와 배터리 직렬연결 최종 (-)단자에 연결합니다.
- Battery(+) Cable을 BPU+) 단자와 배터리 직렬연결 최종 (+)단자에 연결합니다.
- 아래 그림을 참조합니다.

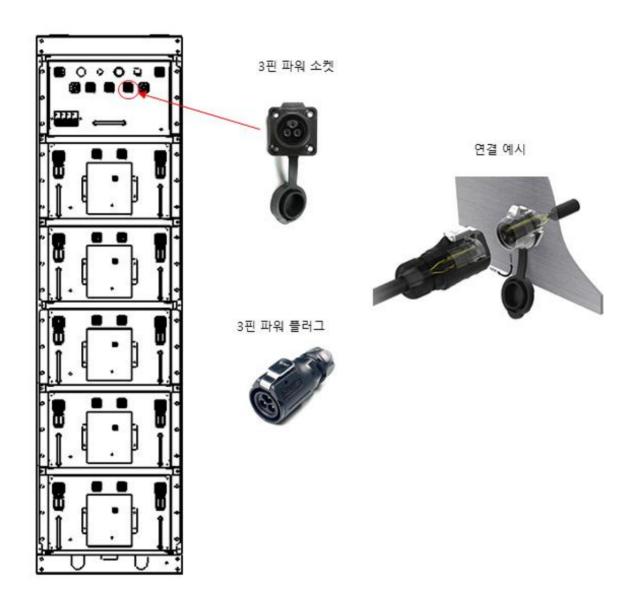


<Figure 24. 배터리 (+)케이블, 배터리 (-)케이블 연결>

■ BPU ~ PCS 연결

- BPU의 PCS(+) 단자, PCS(-) 단자는 PCS의 DC Link에 연결합니다.
- 각 장비의 안전한 사용을 위하여 PCS와 배터리 사이에 Circuit Breaker를 연결합니다.
- BPU와 PCS간 연결케이블은 별도로 제공되지 않습니다.
- 규격에 맞는 케이블을 사용합니다.
- 아래 그림을 참조합니다.

<Figure 25. PCS(+), PCS(-) 케이블 연결>


3.5.6 제어 전원연결

주의

제어 전원 단자대에 극성을 반대로 연결할 경우 제품이 고장 납니다.

- 제공된 소켓을 사용하여 BMS 제어 전원 단자를 연결합니다.
- 제공되는 소켓과 같은 사양인 플러그를 연결합니다.
- 아래 그림을 참조합니다.

<Figure 26. BMS 제어 전원 단자 연결>

3.5.7 설치 완료

<Figure 27. 설치 완료>

4. 외부 장비 통신, FAN

4.1 외부 장비 통신

4.1.1 통신 사양

■ 통신방법: Modbus RTU

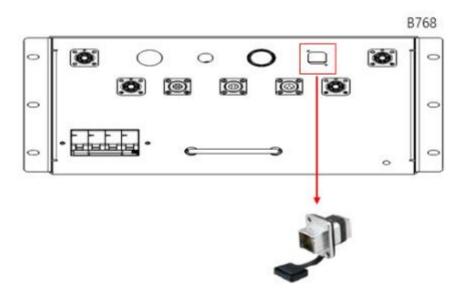
■ 통신속도: 115200

■ Data Bit : 8■ Stop Bit : 1■ Parity : None■ RTS : Disable

■ Pin Map

1 : Data Negative8 : Data Positive

4.1.2 통신연결

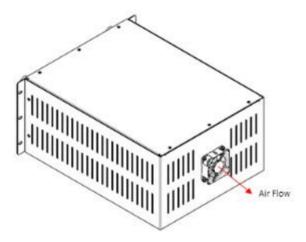

주의

그림과 같이 연결하고 다른 통신 포트에 연결하지 마십시오.

통신 포트를 임의로 변경하면 제품이 고장 날 수 있습니다.

제공된 통신케이블만 사용하십시오.

제품을 임의로 사용하면 제품이 제대로 작동하지 않을 수 있습니다.


<Figure 28. 배터리 시스템 외부 장비 통신연결>

4.2 DC FAN (Optional)

4.2.1 DC Fan 장착

- DC FAN은 MODULE 후면에 설치되며 위치는 아래 사진과 같습니다.
- DC FAN은 방향이 후면부를 향하도록 설치합니다.
- DC FAN은 각 모듈별 1개가 설치됩니다.
- FAN 고정은 M4 볼트를 사용합니다.

<Figure 29. DC FAN 장착>

4.2.2 DC Fan 사양

■ FAN Model: HFD0802524SEH

■ Rating Volt: 24VDC

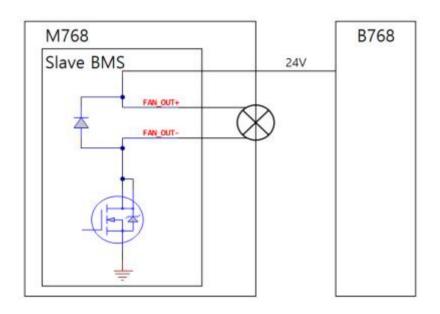
■ Input Current: 0.15A (MAX 0.3A)

■ Power Consumption: 3.6W (Speed: 3,400 RPM)

■ Air Flow: 38.00 CPM

■ Noise: 41.8

■ Bearing Type: SLEEVE



<Figure 30. DC FAN 도면>

4.2.3 DC Fan 회로 구성과 제어

- FAN 전원은 BPU FAN PWR 24Vdc 단자와 연결됩니다.
- FAN 제어 신호는 M768 내의 Slave BMS와 연결됩니다.
- 구성회로는 아래와 같습니다.

<Figure 31. DC FAN 회로 구성 방법>

- 모듈 내 셀간의 온도 편차를 줄이기 위해 DC Fan을 사용합니다.
- Module에 설치된 FAN은 모듈의 과열된 배터리를 냉각하기 위한 것이 아닙니다.

5. 제품 사양

5.1 시스템 구성

- 우수한 긴 수명, 안정성을 갖춘 LFP 각형 셀을 사용한다.
- 모듈은 사양에 따라 직/병렬로 구성되며 Rack 시스템의 기본 단위이다.
- 모듈 내부에는 모듈 BMS를 설치하여 각 셀의 전압과 내부 온도를 감지하고 셀 밸런싱을 수행한다.
- Rack은 직렬로 연결된 다수개의 Module, 1개의 BPU로 구성된다.
 - * BPU: Battery Protection Unit
- 이들 구성품은 견고한 Rack 프레임에 설치된다.

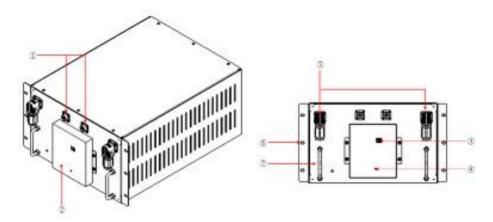
-	Cell	Module	Rack
Figure			
Configuration	1S 1P	<u>< Table 5. ></u> 참조	< Table 6. > 참조

<Table 4. 시스템 구성>

5.2 모듈 사양

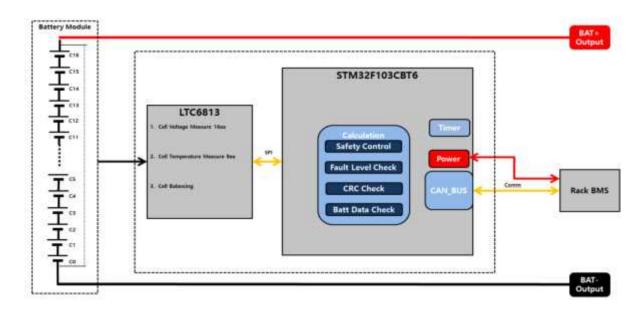
5.2.1 사양

항목	내용			비고	
Model	M768	M768	M768		
Nominal Voltage (V)	51.2	38.4	51.2	Design Spec.	
Nominal Capacity (Ah)	150	100	50	Design Spec.	
Energy (kWh)	7.68	3.84	2.56		
Using Energy	6.9	3.46	2.3	DoD 90% Operation	
Charge Voltage	56	42	56	<u> 9항 참조</u>	
Discharge Voltage	47.52V	35.64V	47.52V		
Operating Voltage	47.52 ~ 56V	35.64 ~ 42V	47.52 ~ 56V	DoD 90% Long Cycle Life	
Charge Method	CC-CV	CC-CV	CC-CV	<u>9항 참조</u>	
Configuration	16S1P	12S1P	16S1P	MODULE	
Weight	About 72	About 45	About 35		
Size	570×242×450	570×242×450	570×242×450	W × H × D(mm)	
Operation Temperature	-20 ~ 60°C				
Operation Humidity	40~80%				
Communication	LP-16-C08SX-02-401&CAN 2.0A		to BPU		


<Table 5. 모듈 사양>

5.2.2 Slave BMS 기능

- Cell 데이터 수집
- Cell 온도 측정
 - 6~8 Point 계측
 - Cell 표면 온도 측정
- Cell Balancing 수행
- 이상 상황 감지 및 전송


5.2.3 모듈 외형도

<Figure 32. 모듈 외형>

- ① 모듈~모듈, 모듈~BPU 통신 포트
- ② BMS Cover
- ③ USB 커넥터
- 4 LED
- ⑤ + : 양극 단자, : 양극 단자
- ⑥ 모듈 고정 Hole
- ⑦ 모듈 손잡이

5.2.4 Block Diagram

<Figure 33. 모듈 Block Diagram>

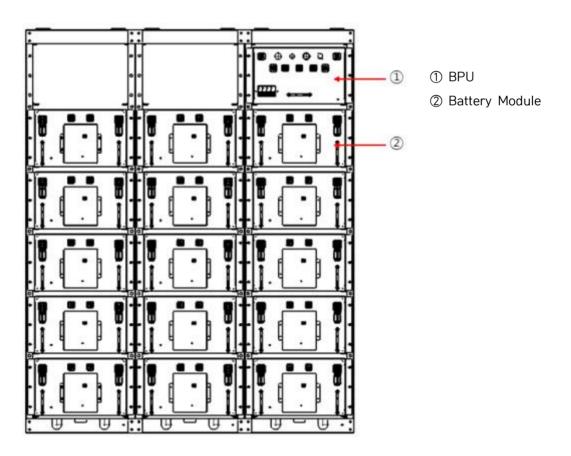
5.3 Rack 사양

5.3.1 사양

항목	내용				비고	
Model	RK36150	RK28150	RK37100	RK3650	RK2950	
Nominal Voltage (V)	768		729.6	870.4		D
Nominal Capacity (Ah)	150		100	50		Design Spec.
Energy (kWh)	115.2		72.9	43.5		
Using Energy	103.6		65.6	39.15		DoD 90% Operation
Charge Voltage	840.0		798	952		9항 참조
Discharge Voltage	712.8		677.16	807.84		
Operating Voltage	712.8 ~ 840.0		677.16~798	807.87~952		DoD 90% Operation
Charge Method		CC-CV				<u>9항 참조</u>
Configuration	240S1P		228S1P	204S1P		
Charge Current	150		100	50		
Discharge Current	150		100	50		
Weight	About 1,255	About 1,225	About 1,025	About 755	About 735	
Size	1,392×1,710 ×692.2	928×692 ×2,238	891×767 ×1,764	1,248×692 ×1,360	832×692 ×1,909	W×H×D(mm)
Configuration	M756 15EA		M384 19EA	M256 17EA		
Product	B768		B384	U256		
	External short circuit					
Protection Function	Isolation check					
OVP, UVP, OTP, UTP, OCF			P, OCP			
Protection Unit	DC Relay, Fuse					
Operation Temperature	-20 ~ 60°C					
Operation Humidity	40~80%					
Communication	CAN 2.0A					Module to BPU
Communication	TCP/IP					BPU to EMS

<Table 6. Rack 사양>

5.3.2 보호 기능 용어 정리

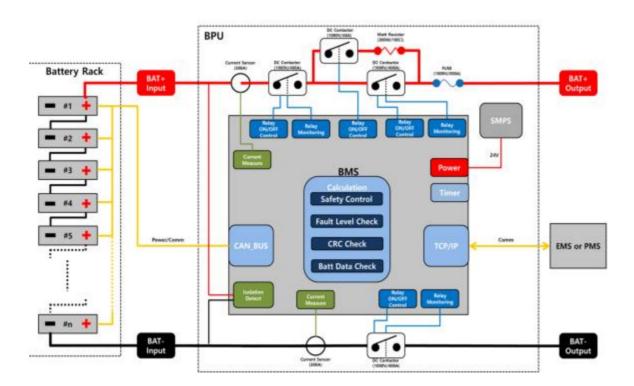

■ OCVP : Over Cell Voltage Protection
 ■ UCVP : Under Cell Voltage Protection
 ■ ORVP : Over Rack Voltage Protection
 ■ URVP : Under Rack Voltage Protection
 ■ OCCP : Over Charge Current Protection
 ■ ODCP : Over Disharge Current Protection

■ OTP : Over Temperature Protection■ UTP : Unde Temperature Protection

■ DCVP : Difference Cell Voltage Protection■ DTP : Difference Temperature Protection

■ IRPVP : Isolate Resistance Plus Voltage Protection■ IRMVP : Isolate Resistance Minus Voltage Protection

5.3.3 Rack 외형도

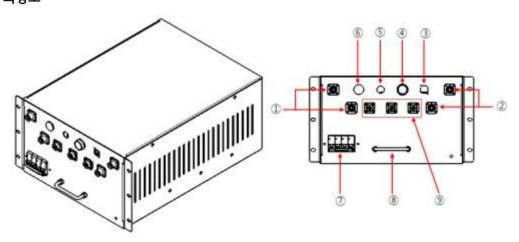


<Figure 34. Rack 외형>

5.3.4 Block Diagram

- Rack System은 Module 다수개가 직렬 및 병렬로 구성되어 공칭전압과 공칭용량을 가진다.
- Rack System을 구동하기 위해서는 DC24V 전원소스가 BPU에 제공되어야 한다.
- BPU는 각각의 Module에 내장된 Slave BMS와 CAN 통신을 이용하여 셀 단위의 전압과 모듈 내부의 온도 데이터를 수집하고 Hall Sensor로부터 충·방전 전류 데이터를 수집한다.
- BPU는 수집된 데이터를 분석하여 SOC를 추정하고 Cell Balancing 기능을 수행하며 과충전, 과방전, 과열, 과전류 등 배터리에 이상이 발생하면 DC Relay를 제어하여 배터리 보호 기능을 수행한다.
- BPU는 통신을 이용하여 타 시스템(PCS, EMS 및 감시프로그램 등)에 Rack System의 정보를 제공한다.
- BPU(Battery Protection Unit)은 DC Relay와 Fuse로 구성되며 BPU BMS의 제어에 따라 DC Relay 를 ON/OFF 함으로써 PCS와 연결 또는 차단한다. 그리고 사고전류 발생 시 Fuse가 융단 되어 연결을 차단한다.

<Figure 35. Rack Block Diagram>


5.4 BPU 사양

5.4.1 사양

항목		비고			
Model	B768	B384	U768	U256	
Control Power					
Allow Current					
Communication	LP	to Module			
Communication		to EMS			
External short circuit					
Protection Function					
Protection Unit	DC Relay, Fuse				
Size	565×240×450	620×283×212	581×450×240	581×402×240	W × H × D(mm)

<Table 7. BPU 사양>

5.4.2 BPU 외형도

<Figure 36. BPU 외형>

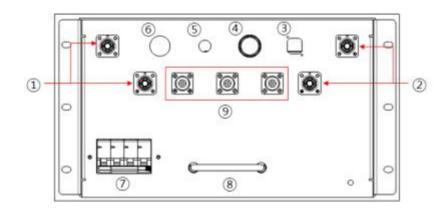
① 메인+ 단자대: 모듈 양극단자 연결, PCS 양극단자 연결 ② 메인- 단자대: 모듈 음극단자 연결, PCS 음극단자 연결

③ RJ45 커넥터

⑦ 회로 차단기

④ 전원 스위치

8 Handle


⑤ 상태표시 LED

⑨ 통신 커넥터: CAN / 24V 전원 입력 / Wake Up

⑥ USB 커넥터

5.4.3 BPU 각 부 명칭 및 기능

<Figure 37. BPU 전면부>

① BAT(+) / PCS(+) Terminal

• DC (+) Link 연결 단자로 BAT 단자와 PCS 단자 사이에 충전 보호용 DC Relay와 Fuse로 연결되어 있으며 충전 보호 시 BAT 단자와 PCS 단자 간 연결을 해제한다.

② BAT(-) / PCS(-) Terminal

- DC (-) Link 연결 단자로 BAT 단자와 PCS 단자 사이에 방전 보호용 DC Relay와 연결되어 있으며 방전 보호 시 BAT 단자와 PCS 단자 간 연결을 해제한다.
- ③ RJ45 커넥터
- ④ 전원 스위치
 - BPU 전원 스위치로 전원을 켜거나 끌 때 사용한다.
- ⑤ 상태표시 LED 전원 스위치

LED	명칭	기능		
POWER(Green)	전원 표시 LED	Power S/W를 켰을 때 전원이 정상적으로 공급되면 점등된다.		
Status(Green)	System 정상 표시 LED	Rack 시스템이 정상일 때 깜박인다.		
Status(Yellow)	Warnning 발생 표시 LED	과충전, 과방전, 과열, 과전류 등 배터리 보호 경고 이벤트가 발생했을 경우 깜박인다.		
Status(Red)	Fault 발생 표시 LED	과충전, 과방전, 과열, 과전류 등 배터리 보호 Fault 이벤트가 위험시 깜박인다. DC Contact 차단		

<Table 8. 상태표시 LED>

- ⑥ USB 커넥터
 - 개발자 디버깅용으로 사용한다.
- ⑦ 회로 차단기
 - 24V 전원 차단시 사용된다.
- Handle
 - BPU 넣고 당길 때 사용한다. (사용하지 않을 때는 접어둘 것.)
- ⑨ 통신 커넥터 : CAN / 24V 전원 입력
 - Rack <-> Module 간 통신 / Module 전원 인가

6. 기동 및 정지 절차

6.1 기동 절차

제시된 기동 절차를 지키십시오.

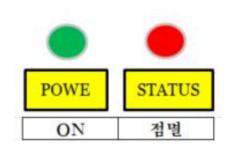
기동 절차를 지키지 않는 경우 돌입전류에 의해 DC Relay 고장 또는 Fuse 융단이 발생할 수 있습니다.

- Rack System과 연결된 장비의 배터리 연결 측 차단기를 OFF 시킨다.
- BPU의 전원 단자에 외부 전원(DC 24V)을 공급한다.
- BPU의 전원 스위치를 켠다.

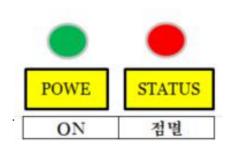
주의

■ BPU는 Rack System에 이상이 없는지 확인한 후 이상이 없다면 LED는 아래와 같이 동작한다.

<Figure 38. 배터리 시스템 정상 LED>


- Rack 시스템이 정상상태일 경우 배터리와 PCS 사이 전압을 확인 후 PCS 기동 절차에 따라 배터리와 PCS를 연결한다.
- 제품 기동 시 Rack System에 경고가 있다면 LED는 다음과 같이 동작한다.

<Figure 39. 배터리 시스템 경고 LED>



■ 제품 기동 시 Rack System에 이상이 있다면 LED는 다음과 같이 동작한다.

<Figure 40. 배터리 시스템 경고 LED>

- 제품 기동 시 Rack System에 이상이 있다면 DC Relay는 Close 되지 않는다.
- 제품이 정상적으로 기동 되고 운전 중 고장 발생 시 LED는 다음과 같이 동작한다.

<Figure 40. 배터리 시스템 고장 LED>

6.2 정지 절차

제시된 정지 절차를 지키십시오.

정지 절차를 지키지 않는 경우 돌입전류에 의해 DC Relay 고장 또는 Fuse 융단이 발생할 수 있습니다.

- Rack System과 연결된 장비가 배터리의 연결 해제가 가능한 상태인지 확인한다.
- 충전 또는 방전이 진행 중일 경우 PCS를 정지시킨다.
- Rack System과 연결된 장비의 차단기를 OFF 시켜 연결을 해제한다.
- BPU의 전원 스위치를 끈다.

주의

■ BPU의 외부전원 (DC 24V)의 연결을 해제한다.

7. 모듈 온도 센서

7.1 일반사항

- 온도 모니터링 시스템은 모듈 내부에 BMS와 통합되어 있다.
- 모니터링 시스템은 배터리 모듈 내부의 주변 온도를 측정한다.
- 모니터링 시스템은 과열 신호 시 ESS 시스템 차단으로 안전성 강화
- 감시 시스템은 검출 시 비상경보 신호를 EMS에 전송하여 예방조치를 취한다.

7.2 사양

- 계측 : 배터리 표면 온도, 주변 온도, 상대 습도
- 수명 > 5년
- 샘플링 속도 : 500ms.
- 주변 온도 감지 범위: -40°C~+120°C

8. BMS 보호 설정값

항목	내용	비고
과충전 보호	Max Cell Volt ≥ 3.7V	3s 이상
과충전 경고	$3.7V > Max Cell Volt \ge 3.6V$	3s 이상
과충전 보호 해제	BMS Reset	
과방전 보호	Min Cell Volt ≤ 2.7V	3s 이상
과방전 경고	2.7V < Min Cell Volt ≤ 2.9V	3s 이상
과방전 보호 해제	BMS Reset	
전압 편차 보호	전압편차 1.0V 이상	3s 이상
전압 편차 경고	전압편차 0.8V 이상	3s 이상
전압 편차 보호 해제	BMS Reset	
과대충전전류 보호	200A ↑	3s 이상
과대충전전류 경고	150A ↑	3s 이상
과대방전전류 보호	350A ↑	3s 이상
과대방전전류 경고	300A ↑	3s 이상
과전류 보호 해제	BMS Reset	
쇼트 전류 보호	Fuse	
과열 보호	65℃↑	3s 이상
과열 경고	60°C ↑	3s 이상
과열 보호 해제	BMS Reset	
저온 보호	-25℃↓	3s 이상
저온 경고	-20°C↓	3s 이상
저온 보호 해제	BMS Reset	

<Table 9. BMS 보호 설정값>

9. 충전 및 방전 제어 알고리즘 (CC CV Cut-off)

주의

제안된 충전 및 방전 알고리즘을 PMS 또는 EMS에서 구현하여 사용하세요. 충전 및 방전 알고리즘의 기준을 SOC로 설정하지 마십시오. 제안된 충전 및 방전 알고리즘을 준수하지 않는 경우 배터리의 과충전 및 과방전이 발생하여 제품 수명에 영향을 미칠 수 있습니다.

9.1 표준 충전 알고리즘

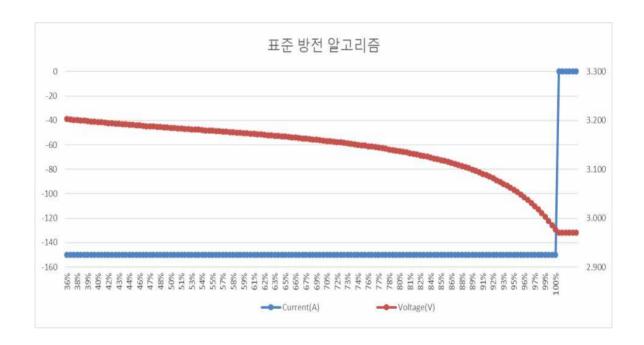
■ 표준 충전 기준

- CC current: 1C

- CV transition voltage: 3.50V * 셀 직렬연결 수

- Cut off current: 0.05C

<Fig. 41. 표준 충전 Profile>



9.2 방전 알고리즘

■ 표준 방전 기준

- CC current: 1C

- Cut off voltage: 2.97V * 셀 직렬연결 수

<Fig. 42. 표준 방전 Profile>

9.3 적용

- 리튬이온 배터리 특성상 충전 중 충전 전류를 줄이면 배터리 전압이 일정하게 유지되며, 충전 종료 후일정 시간이 지남에 따라 전압이 떨어지게 됨.
- 즉 충전이 종료되면 시간이 지남에 따라 배터리 전압이 작아지게 됩니다.

10. 고장 복구

주의

고장 시 EMS의 배터리 이력 데이터나 로그 파일을 공유하면 원인 분석 및 A/S에 도움이 됩니다.

고장 시 자사와 협의하여 배터리 상태 체크 후 배터리 복구 절차를 진행합니다.

10.1 과충전, 과방전 보호

- EMS 운영 지침에 따라 PCS를 정지
- 배터리 정지 절차에 따라 DC 차단기 OFF(PCS와의 연결 차단)
- BPU Reset
- Reset 후 배터리 시스템이 정상 동작할 경우 PCS, EMS 운전 지침에 따라 DC 차단기 ON
- 과충전일 경우 방전 진행, 과방전일 경우 충전 진행

10.2 고온, 저온 보호

- EMS 운영 지침에 따라 PCS를 정지
- 배터리 Room 환경 점검 진행(에어컨 상태 및 주위 온도 확인)

10.3 통신 에러

- EMS 운영 지침에 따라 PCS를 정지
- 배터리 정지 절차에 따라 DC 차단기 OFF(PCS와의 연결 차단)
- BPU Reset
- 리셋 후 배터리 시스템이 정상 동작할 경우 PCS, EMS 운전 지침에 따라 DC 차단기 ON

10.4 고장 시 연락처

■ 본 매뉴얼에 포함하지 않은 Fault 상태 및 고장 시 ㈜한국파워셀에 기술 지원을 요청하십시오. 연락처: 042-635-5684

11. 관리

11.1 제품 청소

- 제품을 청소하려면 부드럽고 마른 천을 사용하세요.
- 표면이 더러운 경우 물을 가볍게 적신 부드러운 천을 사용하세요.
- 단, 물에 적신 경우 배터리 단자를 닦지 마세요.
- 제품 청소 시 휘발성 액체를 사용하지 마세요.
- ESS Room 청소 시 PCS, Battery System을 포함한 모든 시스템을 차단 후 청소합니다.

11.2 점검 항목

■ 환경 점검

- 배터리 운영 환경관리는 배터리 고장 및 화재와 같은 사고를 방지할 수 있으므로 자주 실시합니다.
- 내부 온도
- 누수 점검
- 청소 상태
- 공조 상태
- 절연저항(점검 조건 : 배터리 시스템 OFF, PCS-Battery System 차단)

■ 배터리 상태 점검

- ESS 운전 중에는 값이 실시간으로 변화하므로 배터리 운전 정지 시에 점검합니다.
- 배터리 전압
- 배터리 전류
- 배터리 SOC
- 배터리 SOH
- Cell 전압
- Cell 온도
- 통신상태

